
Extending Enterprise and Domain Engineering Architectures
to Support the Object Oriented Paradigm

Fred A. Maymir-Ducharme, PhD
Lockheed Martin, Mission Systems

fred.a.maymir-ducharme@lmco.com

1.0 BACKGROUND As the size and complexity of software systems increase and budgets decrease, the
U.S. Government has realized the dire need to provide guidance to develop systems more effectively and
efficiently. We can no longer afford to “reinvent the wheel” every time a new system is needed.
Engineering families of systems, product lines, and exploiting commercial off-the-shelf (COTS) software
and Government off-the-shelf (GOTS) software are just a few approaches to achieving better engineered
systems.  In addition, software intensive systems must be able to work together and exchange information.
While interoperability is important for many information systems, it is essential for military systems, which
must be capable of supporting lifesaving operations that may require changing a mix of forces, at a
moment’s notice, just about anywhere in the world.

U.S. Government has developed architectural guidance and policy to achieve the required interoperability,
as well as engineering systems faster, better and cheaper.   These initiatives and products only address
“what” should be done.  Program managers and systems engineers tasked to deliver these systems depend
on technology addressing the associated “how to’s.”  This paper addresses the technology (concepts,
processes, methods and tools) used on multiple programs to effectively and efficiently engineer military
systems, using various architecture guidance, policy and products.  One of the major themes (i.e., lessons
learned) of this paper is that there are many conflicts between the technologies associated with Object
Oriented approaches and the more traditional Structured/Functional approaches.  If both approaches are
used by an organization, these challenges must be identified early and dealt with accordingly.

2.0  DISCIPLINED SOFTWARE ENGINEERING  The way we engineer our systems is
continuously changing and improving. We can no longer treat each new project as a single, new and
independent development effort and not build on previous engineering efforts and experience. Instead we
need to view these systems within the context of similar systems built in the past, exploiting the
commonalities and engineering the appropriate variances. Additionally, we must leverage off existing
reusable assets and develop new ones with reuse in mind. Reuse is an integral part of a disciplined software
engineering practice, which is continuously improving its technology/asset base and processes. In order to
meet today's software challenges [6] of  increasing demand, complexity and size, we need to establish new
ways of fusing together information about what assets exist and need to be woven into the processes used to
guide our engineering activities. Various software engineering methods, processes and tools exist to help
take advantage of available information about data, process, and software assets needed to make the
engineering decisions governing the quality of the products that evolve as a consequence of their
mechanization.

Disjoint engineering efforts (i.e., Information Engineering, Domain Engineering and Application
Engineering) result in engineering process stovepipes. Each engineering level develops models representing
the associated requirements. Each engineering practice designs a solution (sometimes captured by an
architecture or design). And each engineering practice then implements/develops their products. The
challenge is to fuse these engineering methods (and thereby their work products) to eliminate redundancies,
inconsistencies and other anomalies.  The goal is to define and implement a disciplined software
engineering practice that assures that the work products and standards produced any phase of the lifecycle
are consistent and coordinated with the work products and standards of  all associated lifecycle phases.  For
example, data models developed during the enterprise modeling phases must feed into the appropriate
domain engineering and application engineering phases; and reciprocally, provide feedback to the
enterprise efforts when the data models need to be modified or extended.  Applications developed
individually without considering common and/or related systems in the domain result in stovepipe systems /



applications.  Likewise, domains engineered without considering the broader enterprise (e.g., common data
elements, business functions, the need to interoperate, etc.), can result in stovepipe domains.

Mature engineering disciplines support clear separation of routine problem solving from R&D. These
disciplines have publicly-held, experience based, and formally transmitted technology bases that include
product models (e.g., designs, specifications, performance ranges) and practice models (tools and
techniques to apply to the product models) (See Figure 1 below). Furthermore, the qualities of products
built from these models are well-understood and predictable before the products are produced.

Figure 1  The Maturing of the Software Engineering Discipline

The state-of-the-practice of software engineering is not yet at this level of maturity. Instead of basing new
development on a technology base of well-understood models, current software engineering practice tends
to start each new application development from scratch with the specification of requirements, and moves
directly into the design and implementation. By contrast, this effort's vision of a mature software
engineering discipline, as illustrated in the figure above, relies on a technology base of reusable assets and
clearly separates routine systems development (i.e., application engineering) from development of the
domain-specific technology base (i.e., domain engineering). This separation highlights the need and
significance of developing reusable corporate assets including requirements, models, architectures,
processes, and components. The application engineering function can then focus on validating and using
this technology base, instead of beginning with a blank sheet. In addition to creating the initial set of
domain assets, domain engineering processes will continue to add and enhance the technology base
according to the requirements associated with application engineering.

Under the USAF Comprehensive Approach to Reusable Defense Software (CARDS) Partnerships Program
[20], LM developed and applied, the AF/CARDS Engineered Software (ACES) methodology [21,22,23]
(illustrated below), an approach that combines Information Engineering with Domain Engineering and the
Object Modeling Technique (OMT).  The CARDS Tri-Lifecycle Software Engineering model [1,2,27]
(Figure 2 below), reflects three types of engineering activities during the acquisition and life cycle
development and maintenance of software intensive systems: Enterprise Engineering [2,3,26], Domain
Engineering [23,24.25], and Application Engineering [1,5,7,8,17]. Due to the complexity of engineering all
of the systems within the enterprise, as well as the numerous methodologies available for each engineering
area, it is likely that information will be lost, regenerated, or not seen as relevant to previous or succeeding
activities -- thereby causing redundant work efforts, data and function anomalies, and higher development
and maintenance costs.  This lack of coordination and communication across processes has been coined

M a t u r i n g  o f  t h e  S o f t w a r eM a t u r i n g  o f  t h e  S o f t w a r e
E n g in e e r i n g  D is c ip l in eE n g in e e r i n g  D is c ip l in e

N e w
D e v e lo p m e n t

E n g in e e r e d
P r o d u c t s

t e c h n o lo g y
in s e r t io n

P r o d u c t  L i n e  A s s e t  B a s e
• M o d e l s  ( r e q u i r e m e n ts ,

a r c h i t e c t u r e ,  d e s ig n ,  . . . )

• P la n s  (d e v e lo p m e n t ,  t e s t ,  … )

• S o f t w a r e  (d e v e lo p e d , C O T S ,
G O T s ,  … )

• . . .

R o u t in e  D e s ig n
a n d  E n g in e e r i n g

p r o d u c t io n
e n g in e e r in g

e x p e r ie n c e  in
e n g in e e r in g  p r a c t ic e

e x p e r ie n c e
in  p r o d u c t
u s e



"stovepipe processes" and is analogous to the systems stovepipes dilemma, where systems fail to leverage
common data and the necessary interoperability.   Approaching the problem with planning oversight of all
three activities ensures that information flows from one activity to the next.

  T r i - L i f e c y c le  E n g in e e r i n g  M o d e lT r i - L i f e c y c le  E n g in e e r i n g  M o d e l

A p p l ic a t io n  E n g in e e r in g

S y s te m  D e s ig n
C o n f ig u r a t i o n

S y s te m  
C o m p o s i t io n

B u s in e s s /M a r k e t  A n .
a n d  P la n n in g

S y s te m  
R e q u i re m e n t s  
E l ic i ta t io n

A s s e t  M a n a g e m e n t

D o m a in  E n g in e e r in g

O r ie n te d  D e s ig n
D o m a in

Im p le m e n ta t io nA r c h i t e c t u r e
D e v e lo p m e n t

In f r a s t r u c tu r e
D e v e lo p m e n t

P r o d u c t  L in e
Id e n t i f i c a t io n

D o m a in  A n a ly s is  
D o m a in  A n a ly s is  
M a r k e t  A n a ly s is

D o m a in  /  P r o d u c t  L i n e  E n g in e e r i n g

E n te r p r is e  A r c h i te c tu r e  P la n n in g

F in a n c ia l
P la n n in g

O p e r a t io n a l
P la n n in g

E n t e r p r i s e  E n g i n e e r in g

Figure 2 The CARDS Tri-Lifecycle Engineering Model

There are numerous Domain Engineering methods and processes.  The primary domain analysis methods
(primary because of their validation/applications on various efforts and associated publications) include:
Organization Domain Modeling (ODM) [18], a well defined and comprehensive method;  Domain
Engineering Process (DEP) [27], an extension of object-oriented methods; the SEI Feature Oriented
Domain Analysis (FODA) [2] method, considered to be the most mature DE methodology;  and SPC’s
Synthesis [19].

3.0  ARCHITECTURE GUIDANCE  U.S. Government guidance and policy such as the Command
Control Communications Computers Intelligence Surveillance and Reconnaissance (C4ISR) Architecture
Framework, Joint Technical Architecture (JTA), Defense Information Infrastructure (DII) Common
Operating Environment (COE) and other US DoD architectural guidance are crucial to achieving
interoperability, while building systems faster, better and cheaper.

The JTA [30] is the DoD’s specification for interoperability between all DoD systems.  Figure 3 below
illustrates the relationship of the JTA to other DoD architecture guidance and initiatives.  The JTA is based
on the Technical Architecture Framework for Information Management (TAFIM),  Adopted Information
Technology Standards (AITS) – Volume 7 of the TAFIM [12]; and uses the DoD Technical Reference
Model (TRM, TAFIM Vol 2) as it’s structure for specifying interoperability for each major service area.
The JTA defines the service areas, interfaces, and standards (JTA elements) applicable to all DoD systems,
and its adoption is mandated for the management, development, and acquisition of new or improved
systems throughout DoD. The JTA is complementary to and consistent with other DoD programs and
initiatives aimed at the development and acquisition of effective, interoperable information systems --
including the DoD’s Specification and Standards Reform, the Information Technology Management Reform
Act (ITMRA); DoD C4ISR Architecture Framework, the DoD TRM; the Defense Information
Infrastructure Common Operating Environment (DII COE); and Open Systems Initiative.



Figure 3  DoD Architecture Guidance

The DoD TRM originated from the TAFIM and was developed to show which interfaces and content
needed to be identified. The TRM Working Group (TRMWG) has extended the scope of the TRM to
include real-time systems (e.g., weapon systems) and is coordinated with the JTA.  As figure 3 indicates, the
JTA is also very closely coupled with the DII COE [32] and the C4ISR Architecture Framework [31].  The
DII COE is the DoD’s implementation of a technical architecture supporting interoperability, supplemented
by various common services / utilities to maximize reuse across multiple systems.  And as the figure below
indicates, the JTA is one of the three architectures defined by the C4ISR Architecture Framework.

C 4 I S R  A r c h i t e c t u r a l  F r a m e w o r kC 4 I S R  A r c h i t e c t u r a l  F r a m e w o r k

O p e r a t i o n a l
V i e w

I d e n t i f i e s  W a r f i g h t e r  R e l a t i o n s h i p s
a n d  I n f o r m a t i o n  N e e d s

I d e n t i f i e s  W a r f i g h t e r  R e l a t i o n s h i p s
a n d  I n f o r m a t i o n  N e e d s

T e c h n i c a l
V i e w

P r e s c r i b e s  S t a n d a r d s
a n d  C o n v e n t i o n s

P r e s c r i b e s  S t a n d a r d s
a n d  C o n v e n t i o n s

P r o c e s s in g  a n d  L
e v e l  o f

I n f o r m
a t i o n  E

x c h a n g e

R
e q u i r em

e n t s

B
a s i c  T

e c h n o lo g y

S u p p o r t a b i l i t y  a n d

N
e w

 C
a p a b i l i t i e s

S p e c i f i c  C a p a b i l i t i e s  I d e n t i f i e d  t o
S a t i s f y  I n f o r m a t i o n - E x c h a n g e
L e v e l s  a n d  O t h e r  O p e r a t i o n a l
R e q u i r e m e n t s

T e c h n i c a l  C r i t e r i a  G o v e r n i n g
I n t e r o p e r a b l e  I m p l e m e n t a t i o n /
P r o c u r e m e n t  o f  t h e  S e l e c t e d
S y s t e m  C a p a b i l i t i e s

P r o c e s s in
g  a

n d  I
n t e

r - N
o d a l

L
e v e l s

 o
f  

I n f o
r m

a t i
o n

E
x c h a n g e  R

e q u ir
e m

e n t s

S y s t e m s
V i e w

R e l a t e s  C a p a b i l i t i e s  a n d  C h a r a c t e r i s t i c s
t o  O p e r a t i o n a l  R e q u i r e m e n t s

R e l a t e s  C a p a b i l i t i e s  a n d  C h a r a c t e r i s t i c s
t o  O p e r a t i o n a l  R e q u i r e m e n t s

S y s t e m
s  A

s s o c i a
t i

o n s  t
o

N
o d e s ,  A

c t i
v i t

i e
s ,  N

e e d -

l in
e s  a

n d  R
e q u i r

em
e n t s

S o u r c e :  “  C 4 I S R  A r c h i t e c t u r a l  F r a m e w o r k , ”  V e r s i o n  2 . 0 ,  1 8  D e c  1 9 9 7

Figure 4  DoD C4ISR Architecture Framework

JTAV2D2e.ppt  19980209

DOD Architecture Efforts

• Establishes DOD framework/processes
for defining technical architecture

• Not a specific technical architecture
• The JTA supersedes TAFIM

Volume 7 for C4I systems

Technical Architecture Framework for
Information Management (TAFIM)

• Instantiation of C4I Technical Architecture
focused on (but not limited to) Information
Processing

• The JTA mandates the use of the COE

Common Operating Environment(s)

• Addressing operational, systems, and
technical architecture processes and
structure

• The JTA will continue to use the C4ISR
Architecture Framework.

C4ISR Integration Task Force
(Integrated Architecture Panel)

Establishes a technical architecture
for C4I interoperability

JTA

Databases

Apps

C
O
E

S
H
A
D
E

Infrastructure Services

Standard APIs

Operating SystemKERNEL

Common Support ApplicationsCommon Support Applications



4.0  LESSONS LEARNED  Lockheed Martin (LM) worked with the USAF to replace existing
transportation information systems.  These systems were designed as stand-alone applications serving
individual offices or functions.  The resulting system gaps and overlaps, and the concomitant data and
process redundancy and inconsistency, have caused problems for both information users and systems
maintainers. USAF’s goal is to reduce development and maintenance costs while enhancing support to the
warfighter.  Its objectives are to develop a unified transportation system and environment -- consisting of a
corporate database, corporate applications, common functionality, and a corporate network. The strategy for
reaching these objectives is to introduce a reuse-based approach to application systems development.  The
approach is to replace stovepipe information systems with a set of integrated applications that cut across
organizational and functional lines and to implement a virtual corporate database.  The corporate database
will appear to the user to be integrated and monolithic but will actually be composed of physically
distributed, heterogeneous databases and - for the foreseeable future - legacy USAF and DoD systems.

The USAF employed the Zachman Framework to guide its Information Systems Architecture development.
Within this framework, USAF addressed its enterprise-wide data integration objectives by applying Steven
Spewak’s Enterprise Architecture Planning (EAP) process (an Information Engineering (IE) technique).
The product, a high-level Transportation System Master Plan, includes a Mission Analysis, Information
Architecture, Application Architecture, and Implementation Plan.

ACES was based on the CARDS Tri-Lifecycle Engineering Model, which extended the DARPA Software
Technology for Adaptable, Reliable Systems (STARS) Dual Lifecycle Model (i.e., Domain Engineering) to
include Information/Enterprise Engineering.  The complete ACES methodology addresses Enterprise
Engineering (e.g., Spewak’s EAP) [3], Object-Oriented (OO) Domain Engineering, and OO Applications
Engineering (using Rumbaugh’s OMT) [1].  The transition from Enterprise Engineering to Domain
Engineering uses IE-based affinity analysis between data entities and business processes to identify and
scope candidate domains.  It then uses an OO approach to analyze inter-domain relationships in terms of
service requests.  Within each domain of focus, ACES uses FODA to identify and categorize reuse
opportunities, and OMT to develop reusable business objects that satisfy semantic information integration
and synthesis requirements.  Application Engineering consists of matching specific user requirements to
business objects and developing the necessary application-specific objects.

There were many lessons learned throughout this effort.  Transitioning from the very functional (sometimes
referred to as “structured”) information/enterprise engineering methods to an OO solution incurred several
challenges.  Applying affinity analyses and multi-domain modeling techniques over the enterprise
information element lifecycles to scope the domains and hence group the service objects proved to be key in
this transition.  The fundamental differences between structured and OO approaches must be considered in
the many translations and transitions across the various methods and workproducts within the Tri-Lifecycle.
The Data Access Layer within the framework in Figure 4 below was necessary to deconflict data access
between the structured legacy code and the new OO code.  The figure below summarizes the integration and
application of DoD architectural guidance / products with the associated architecture technology.  Lessons
learned will be discussed during the panel session.  Additional lessons learned in applying the ACES
methodology, based on the CARDS Tri-Lifecycle Engineering Model above are discussed in the references
listed below.  The figure below illustrates the integration of both, the technology (e.g., EAP, ACES, OMT)
and the DoD guidance/products (e.g., C4ISR Architecture Framework, JTA and COE) used to reengineer
the USAF’s Defense Transportation System.



CompleteComplete ACESACES IntegrationIntegration PicturePicture

Technical
• –––
• –––
• –––
• –––

Operational

Systems
• –––
• –––
• –––
• –––

Defines Activities and 
Information Exchange 

Requirements

Defines the Set of Rules
that Govern Systems 
Implementation and

Operation

Defines the Set of Rules
that Govern Systems 
Implementation and

Operation

Time-Phased
Technical
Guidance

Processing and Information
Exchange Requirements

New Technological
Capabilities

Processing and
Information
Exchange
Requirements

Enables or Automates Operational Activities 
through Physical Processes

Enables or Automates Operational Activities 
through Physical Processes

ACES
Architecture
Framework

ACES
Architecture
Framework

Multi-Domain
Model
Multi-Domain
Model

CurrentCurrent
SystemsSystems
BaselineBaseline

Migration Strategy/Migration Strategy/ ImplementationImplementation Plan Plan

InformationInformation
ArchitectureArchitecture

TechnologyTechnology
ArchitectureArchitecture

ApplicationsApplications
ArchitectureArchitecture

MissionMission
AnalysisAnalysis

ProjectProject
PlanPlan

Enterprise
Architecture
Planning

Enterprise
Architecture
Planning

JOINT INTEROPERABILITYJOINT INTEROPERABILITY
andand

WARRIOR SUPPORTWARRIOR SUPPORT

Databases

A
pp
s

C
O
E

S
H
A
D
E

Infrastructure Services

Standard APIs

Operating SystemKERNEL

Common Support ApCommon Support Ap

C 2 I P SA SG D S S

A
P

P
L

I
1 

C
ha

nn
el

Pa
ss

en
ge

r
an

d 
Pa

tie
nt

Pr
oc

es
si

ng

Figure 5  ACES’ Integration of Architecture Guidance, Policy & Technology

5.0  ACKNOWLEDGMENTS   Special thanks and credit are due to the teams that worked with me on
the development and application of these technologies, as well as the team supporting the development of
the DoD JTA (2.0).  These include Jim Fulton, Mike Webb, Robin Burdick, Frank Svoboda, Roger
Whitehead, David Weisman, Lucy Haddad, Nancy Solderitsch, Paul Kogut, Wil Berrios, Russ Richards,
Olimpia Velez, Jim DeGoey, Mark Dowson and many others.

6.0 REFERENCES
1. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design,

Prentice-Hall, 1991.
2. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility

Study, CMU/SEI-90-TR-21, Carnegie-Mellon University, Software Engineering Institute, November 1990.
3. S. Spewak. Enterprise Architecture Planning,  John Wiley & Sons, 1992
4. J. Zachman. “A Framework for Information Systems Architecture,” IBM Systems Journal, Vol. 26, No. 3, 1987.
5. W. Royce, “Managing the Development of Large Software Systems: Concepts & Techniques” 1970
6. OUSD/AT “Defense Report of the Defense Science Board Task Force on Military Software,” 1987
7. B. Boehm, “A Spiral Model of Software Development an Enhancement,” 1988.
8. W. Royce, “TRW’s Ada Process Model for Incremental Development of Large Software Systems,” 1990.
9. MIL-STD-498 “Software Development and Documentation” 1994
10. EIA/IEEE J-STD-016 “Software Life-Cycle Processes” 1995
11. ISO/IEC STD 12207 “IT – Software Life-Cycle Processes” 1995
12. DoD, “Technical Architecture Framework for Information Management (TAFIM)” Version 2.0, Defense

Information Systems Agency, Center for Architecture, June 1994
13. The DoD Enterprise Model, Volume I: Strategic Activity and Data Models, Office of the Secretary of Defense,

ASD (C3I), January 1994.



14. The DoD Enterprise Model, Volume II: Using the DoD Enterprise Model, A Strategic View of Change in DoD, A
White Paper, Office of the Secretary of Defense, ASD (C3I), January 1994.

15. Information Management Program, DoD Directive 8000.1, October 1992.
16. DoD Data Administration, DoD Directive 8320.1, September 1991.
17. IEEE Standard for Developing Software Life Cycle Processes, IEEE Computer Society, IEEE STD 1074-1991,

January 1992.
18. Simos, M.,  “ARPA STARS Organization Domain Modeling (ODM) Guidebook Version 1.0” March 1995
19. “Synthesis, A Reuse-Based Software Development Methodology, Process Guide, Version 1.0,” Software

Productivity Consortium, October 1992.
20. Maymir-Ducharme, F.A., Weisman, D. "A.F./CARDS Technology Transition Program: Reuse Partnerships," proceedings of  the

Reuse ’95 Workshop, August 1995.
21. Maymir-Ducharme, F.A.,  "Variant Domain Engineering Approaches," proceedings of  the  Workshop on Institutionalizing

Software Reuse WISR’95, July 1995.
22. Maymir-Ducharme, F.A., Svoboda, F. "Translating Enterprise Models into Domain Engineering Workproducts," Proceedings of

the Reuse ’96 Workshop, August 1996.
23. Maymir-Ducharme, F.A., (WG Chair). "Opportunistic, Systematic and Optimized Domain Engineering Approaches" Proceedings

of  the Reuse ’96 Workshop, August 1996.
24. Maymir-Ducharme, F.A., “Product Lines, Just One of Many Domain Engineering Approaches,”  Proceedings of the NASA

Software Reuse Workshop, sponsored by GMU and NASA SORT Program, October 1997,

25. Maymir-Ducharme, F.A., “A Product Line Business Model,”  Proceedings of ARES’96 (Architectural Reasoning for Embedded
Software), sponsored by ESPRIT IV project no. 20.477, Las Navas, Spain, 18-20 Nov. 1996.

26. Martin, James, “Information Engineering :  A Trilogy,” Prentice Hall, Inc., Englewood Cliffs, NJ 1989.

27. Defense Information Systems Agency (DISA), “Domain Engineering Process (Version 2)” 28 April 1995.

28. Combined Communications Electronics Board (CCEB), “Combined Interoperability Technical Architecture (CITA) Rationale and
Development Framework (Ver. 0.2) March, 1998.

29. CCEB, “Combined Interoperability Technical Architecture (CITA), Ver. 0.1,” March 1998.

30. DISA, “DOD Joint Technical Architecture (JTA),” http://www-jta.itsi.disa.mil/

31. OSD/C3I “C4ISR Architecture Framework,” http://www.cisa.osd.mil/organization/architectures/

32. DISA, “Defense Information Infrastructure (DII) Common Operating Environment (COE),” http://spider.osfl.disa.mil/dii/


